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Kernel based visual tracking with scale invariant features
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The kernel based tracking has two disadvantages: the tracking window size cannot be adjusted efficiently,
and the kernel based color distribution may not have enough ability to discriminate object from clutter
background. For boosting up the feature’s discriminating ability, both scale invariant features and kernel
based color distribution features are used as descriptors of tracked object. The proposed algorithm can
keep tracking object of varying scales even when the surrounding background is similar to the object’s
appearance.
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The efficiency of visual tracking method depends on two
factors: tracking features and tracking algorithm. Vari-
ous popular visual cues have been studied, such as con-
tour, appearance, corner points, histograms and so on.
However, none of them is robust individually, so mul-
tiple cues are combined or selected in tracking process
recently[1]. The major difficulty is how to efficiently
integrate multiple cues with spatial constraints and tem-
poral dynamics in a principled way.

In this letter, we propose an algorithm that makes use
of both scale space features and color space features to
realize robust visual tracking. After briefly reviewing
the kernel based tracking (KBT)[2] and scale invariant
features transform (SIFT) algorithms[3], a facile SIFT
features matching algorithm is proposed. To overcome
the unstableness of SIFT features matching algorithm
and disadvantages of KBT algorithm, the kernel based
scale invariant features tracking algorithm is proposed.
Efficiency of the proposed algorithm is shown in experi-
ments.

KBT algorithm[2] has attracted more and more atten-
tions in recent years because of its speediness and simplic-
ity. In KBT, the tracking template called target model
can be denoted as

~q = [qu]u=1,··· ,m , and

qu =
1

Ch

n
∑

i=1

Kernel(Xi − c0) · δ(b(Xi), u), (1)

where {Xi}i=1,··· ,n are the pixel locations of the target,

“Kernel” is a spatially weighting function centered at c0.
δ(·) is the Kronecker delta function, b(Xi) is a binning
function that maps the color of {Xi}i=1,··· ,n into a his-

togram bin u with u = {1, · · · , m}, and Ch is a normal-

ization term which satisfies
m
∑

u=1
qu = 1. Similarly, the

tracking features called “candidate model” can be de-
noted as

~p(ck) = [pu]u=1,··· ,m , (2)

where pu = 1
Ch

n
∑

i=1

Kernel(Xi − ck) · δ(b(Xi), u), and the

center of candidate region in the kth frame is denoted as
ck. KBT is also called “mean shift” which is derived
from second order Taylor expansion of Bhattacharyya
coefficient denoted in

B(~p(ck), ~q) =
m

∑

u=1

√

pu(ck) · qu . (3)

And the “mean shift” realizes target model tracking
through maximizing Bhattacharyya coefficient, like

∆c∗ = arg max
∆ck

B(~q, ~p(ck + ∆ck)). (4)

The KBT or “mean shift” outputs ∆c∗, which determines
the displacement of the tracked object,

∆ck =

n
∑

i=1

Kernel(Xi − ck) · w(Xi) · (Xi − ck)

n
∑

i=1

Kernel(Xi − ck) · w(Xi)

, (5)

where

w(Xi) =

√

qu

pu(ck)
. (6)

To find the proper ∆c∗ in Eq. (4), an iterated computa-
tion is needed by computing w(Xi) using Eq. (6) and de-
riving ∆ck using Eq. (5). To adjust the scale of tracking
window, the scale is detected by calculating the Bhat-
tacharyya coefficient for three different scales (larger,
same and smaller by 5%) and choosing the scale that
gives the highest similarity to the target model. But the
scale of the tracking windows cannot always keep up with
the object scale changes and lead to poor localization[4].
So, the first disadvantage of KBT is that the tracking
window’s size cannot be adjusted efficiently. In addi-
tion, the feature used by KBT always has not enough
ability to discriminate object from clutter background.
For solving the first problem, the technique of “tracking
through scale space” was proposed[5]. The method uses
Lindeberg’s theory to select the best scale of tracking
window size. For boosting up the feature’s discriminat-
ing ability, scale invariant features are used as tracking
features in our study.
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Scale invariant features produced by SIFT have high
probability to find the exact match under certain extent
of illumination changes and affine transformation[3], so
it is reasonable to use SIFT features in visual tracking.
The SIFT algorithm outputs a set of features, and every
feature consists of four items,

Fi = {Pi, Si, Oi, Di |i = 1, · · · , N } , (7)

where the subscript i is serial number of SIFT feature.
Pi = 〈xpi, ypi〉 is the ith SIFT feature’s position; Si, Oi

and Di denote the ith SIFT feature’s direction, scale and
descriptor, respectively. It should be noted that Di is a
grid of gradient orientation histogram, which is invariant
to scale, rotation, translation and varying illumination.
Let us give a facile SIFT features matching algorithm
firstly.

It is important to note that features used for tracking
only need to be locally discriminative, which means that
the object only needs to be clearly separable from its
immediate surroundings. In our study, both object and
neighborhood background are considered as one track-
ing region which can be modeled as local SIFT detection
field,

SIFT LDF(xk−1
c , yk−1

c ) = RECT(α · Sk−1
x , β · Sk−1

y ), (8)

where
〈

xk−1
c , yk−1

c

〉

is the center of the tracked object

given by tracking result in previous frame;
{

Sk−1
x , Sk−1

y

}

represents the scale of tracked object in horizontal and
vertical directions; α and β are two constants which de-
termine the proportion between object region and neigh-
borhood background (typically, α = β = 1.5). In the
SIFT LDF region, SIFT features can be divided into
two subsets according to SIFT features’ position item
(denoted as Di in Eq. (7)). One subset includes SIFT
features which belong to the tracked object, and the
other subset includes those SIFT features which belong
to neighborhood background. In the initial frame, they
are denoted as Init Obj Subset and Init Bg Subset re-
spectively. According to the proportion of the object
and neighborhood background, both subsets can be eas-
ily determined as

Init Obj Subset

=







〈

xk−1
pi , yk−1

pi

〉

∈ SIFT LDF|

xk−1
pi ∈ [(xk−1

c − Sk−1
x ), (xk−1

c + Sk−1
x )]∧

yk−1
pi ∈ [(yk−1

c − Sk−1
y ), (yk−1

c + Sk−1
y )]







, (9)

Init Bg Subset

=

{
〈

xk−1
pi , yk−1

pi

〉

∈ SIFT LDF|
〈

xk−1
pi , yk−1

pi

〉

/∈ Init Obj Subset

}

, (10)

where k = 1. Although the Init Obj Subset is deter-
mined only by SIFT features’ position item, the other
three items of each SIFT feature can also be determined
simultaneously. In fact, the Init Obj Subset region con-
tains the object’s tracking template. Traditional SIFT
features match is to find the indices of the nearest neigh-
bors of the given descriptors in the specified database by
using Euclidean distance[3]. However, considering speed-
iness, Bhattacharyya coefficient is more suitable than

Euclidean distance in visual tracking. The likelihood of
descriptors in two continuous frames is defined as

B(D(P k−1
i ), D(P k

i )) =

√

D(P k−1
i ) · D(P k

i ) , (11)

where D(P k−1
i ) denotes SIFT feature’s descriptor at po-

sition P k−1
i in previous frame, D(P k

i ) denotes the cor-
responding SIFT feature’s descriptor at position P k

i in
current frame. In addition, the proposed matching al-
gorithm should consider video object’s dynamic motion
constraint which is defined as SIFT motion constraint as
follows,

SIFT MC(xk−1
pi , yk−1

pi )

=







∀
〈

xk
pi, y

k
pi

〉

∈ SIFT LDF|

xk
pi ∈ [xk−1

pi − MCx, xk−1
pi + MCx] ∧

yk
pi ∈ [yk−1

pi − MCy, yk−1
pi + MCy]







, (12)

where MCx and MCy are the SIFT feature’s motion
constraint parameters in both horizontal and vertical
directions (typically, MCx = MCy = 3). Only the
matched SIFT features which satisfy the definition of
Eq. (12) can be added into matched set denoted as
Match Obj Subset. And the neighborhood background
is redefined as Bg Subset. The two subsets are defined
as follows,

Match Obj Subset

=







〈

xk
pi, y

k
pi

〉

∈ SIFT LDF|

B(D(P k−1
i ), D(P k

i )) > Th ∧
〈

xk
pi, y

k
pi

〉

∈ SIFT MC(xk−1
pi , yk−1

pi )







, (13)

Bg Subset

=

{ 〈

xk
pi, y

k
pi

〉

∈ SIFT LDF|
〈

xk
pi, y

k
pi

〉

/∈ Match Obj Subset

}

, (14)

where P k−1
i =

〈

xk−1
pi , yk−1

pi

〉

and P k
i =

〈

xk
pi, y

k
pi

〉

; Th is
threshold to judge whether the corresponding SIFT fea-
ture matches its template descriptor or not (typically,
Th = 0.85).

To determine the SIFT LDF which will be used by next
frame, the parameters

〈

xk−1
c , yk−1

c

〉

and
{

Sk−1
x , Sk−1

y

}

should be updated as
〈

xk
c , yk

c

〉

and
{

Sk
x , Sk

y

}

, which can
be determined by using mean position and dispersion of
matched SIFT features respectively as follows,

〈

xk
c , yk

c

〉

=

〈

∑

xk
pi
∈Match Obj Subset

xk
pi

N
,

∑

yk
pi
∈Match Obj Subset

yk
pi

N

〉

,(15)

where N is the number of elements in the
Match Obj Subset

{

Sk
x , Sk

y

}

=
{

max
∣

∣xk
c − xk

pi

∣

∣ , max
∣

∣yk
c − yk

pi

∣

∣

}

, (16)

where
〈

xk
pi, y

k
pi

〉

∈ Match Obj Subset.
SIFT features are usually unstable in practical tracking
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process, which makes the number of matched SIFT fea-
tures become smaller and smaller. Then, the SIFT LDF
cannot be determined correctly, which leads both SIFTS
algorithm and matching algorithm to fail. To cope with
the problem, KBT algorithm is integrated into above
matching algorithm.

When tracking starts, the target’s initial position
〈

xk−1
c , yk−1

c

〉

and tracking window’s scale
{

Sk−1
x , Sk−1

y

}

are input into the proposed algorithm. To deter-
mine tracking templates in both scale feature space
and color feature space, three steps are needed in
the initial stage. Firstly, running SIFT algorithm
in SIFT LDF(xk−1

c , yk−1
c ). Secondly, determining the

Init Obj Subset using Eq. (9). Thirdly, extracting target
model using Eq. (1), where c0 =

〈

xk−1
c , yk−1

c

〉

, and the

scale of tracking window is determined by
{

Sk−1
x , Sk−1

y

}

(k = 1).
After initial stage, the tracking starts from the kth

(k = 2) frame as follows.
Input: the target’s initial center position

〈

xk−1
c , yk−1

c

〉

and scale
{

Sk−1
x , Sk−1

y

}

in the previous frame.

Step1: Run SIFT algorithm in SIFT LDF(xk−1
c , yk−1

c )
in the kth frame.

Step2: Extract candidate model of KBT using Eq. (2),
where ck =

〈

xk−1
c , yk−1

c

〉

; scale of tracking window is

determined by
{

Sk−1
x , Sk−1

y

}

.
Step3: Produce Match Obj Subset using Eq. (13).
Step4: Compute

〈

xk
c , yk

c

〉

and
{

Sk
x , Sk

y

}

using Eqs. (15)
and (16).

Step5: Compute B(~q, ~p(
〈

xk
c , yk

c

〉

)) with scale
{

Sk
x , Sk

y

}

.
Step6: Compute ∆c∗ by running Eqs. (5) and (6) iter-

atively until coverage of KBT.
Output: If B(~q, ~p(

〈

xk
c , yk

c

〉

)) < B(~q, ~p(ck + ∆c∗))

SIFT LDF(ck−1+∆c∗) = rect(α·Sk−1
x , β ·Sk−1

y )
Else

SIFT LDF(xk
c , yk

c ) = rect(α · Sk
x , β · Sk

y )
Update the candidate model using Eq. (2).

End
In the proposed algorithm, Bhattacharyya coefficient

is used as an indicator that judges whether the match-
ing result is stable or not. On the one hand, once the
matching result becomes unstable, SIFT LDF can be
maintained with the help of KBT algorithm. On the
other hand, the two disadvantages of KBT can also be
overcome by using SIFT features matching result when
the matching algorithm is stable. In detail, tracking
window’s scale can be updated by

{

Sk
x , Sk

y

}

, and SIFT
features can discriminate the tracked object from clutter
background.

The vehicle sequence of PETS2001 is used as test video.
In this sequence, the vehicle’s scale is varying and its ap-
pearance is similar to surrounding background, so KBT
is inefficient. As shown in Figs. 1(a) and (b), KBT can-
not keep tracking the vehicle because the vehicle’s color
appearance is similar to the highway’s surface and fence.
Figures 1(c) and (d) show that the tracking performance
is also inefficient because of SIFT features’ unstable-
ness. These matched features are labeled as white dots.
The tracking effect of the proposed algorithm is shown
in the Figs. 1(e) and (f), the tracking window’s scale
can be properly updated and the vehicle can be dis-
criminated from clutter background. Figure 2 shows the

Fig. 1. Tracking results with (a,b) KBT, (c,d) SIFT features
matching, and (e,f) the proposed tracking algorithm.

Fig. 2. Bhattacharyya coefficient values produced by KBT,
SIFT features matching, and the proposed algorithm in track-
ing process.

Bhattacharyya coefficients produced by KBT, SIFT
matching algorithm, and the proposed tracking algo-
rithm. It is shown that the proposed algorithm can
switch between KBT and SIFT features matching to get
more accurate and robust tracking effects.

In the field of visual tracking, condensation tracking[6]

and KBT might be the two most famous tracking meth-
ods in recent years. KBT is the representation of “data
driven” tracking method, and the condensation tracking
is the representation of “model driven” tracking method.
From the viewpoint of computation cost, the “data
driven” tracking method generally needs far less com-
putation resource than “model driven” tracking method.
The proposed algorithm can be regarded as a kind of
“data driven” tracking method. So its computation cost
is lower than most “model driven” visual tracking meth-
ods if the same features are used. On the other hand,
it is obvious that the proposed algorithm’s computation
cost is higher than the original KBT because both scale
space features and color space features are used. How-
ever, the added computation cost is worth its salt because
tracking feature’s discriminating ability can be boosted
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up and the shortages of KBT can be overcome. In addi-
tion, it should be noted that the original SIFT matching
algorithm is fast enough for real-time applications even
when running on a whole image. For example, it has
been mentioned that the SIFT features matching can be
done in less than a second even when matching an im-
age to a large database[3]. In the proposed algorithm,
the SIFT matching algorithm only needs to be executed
within the area of SIFT LDF, and the size of SIFT LDF
is far smaller than the size of whole image, so the compu-
tation cost can be more reduced. In short, the proposed
algorithm only needs modest computation resource com-
pared with other visual tracking algorithm.

In conclusion, the proposed algorithm makes KBT and
the SIFT features matching become complementary in
visual tracking. Experiments show how the proposed al-
gorithm adapts to changing scale of tracked object. The
tracker’s efficiency can be guaranteed, even when the
surrounding background is similar to the tracked object.
In addition, an improving way is to estimate attitude
parameters of tracked object in real time, because the

stableness of object’s SIFT features can be maintained
by the proposed algorithm with modest requirement of
computation resource.
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